Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38105935

RESUMO

Transition metals like Zn are essential for all organisms including bacteria, but fluctuations of their concentrations in the cell can be lethal. Organisms have thus evolved complex mechanisms for cellular metal homeostasis. One mechanistic paradigm involves pairs of transcription regulators sensing intracellular metal concentrations to regulate metal uptake and efflux. Here we report that Zur and ZntR, a prototypical pair of regulators for Zn uptake and efflux in E. coli , respectively, can coordinate their regulation through DNA, besides sensing cellular Zn 2+ concentrations. Using a combination of live-cell single-molecule tracking and in vitro single-molecule FRET measurements, we show that unmetallated ZntR can enhance the unbinding kinetics of Zur from DNA by directly acting on Zur-DNA complexes, possibly through forming heteromeric ternary and quaternary complexes that involve both protein-DNA and protein-protein interactions. This 'through-DNA' mechanism may functionally facilitate the switching in Zn uptake regulation when bacteria encounter changing Zn environments; it could also be relevant for regulating the uptake-vs.-efflux of various metals across different bacterial species and yeast.

2.
Nat Chem ; 15(10): 1400-1407, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37500951

RESUMO

Microbe-semiconductor biohybrids, which integrate microbial enzymatic synthesis with the light-harvesting capabilities of inorganic semiconductors, have emerged as promising solar-to-chemical conversion systems. Improving the electron transport at the nano-bio interface and inside cells is important for boosting conversion efficiencies, yet the underlying mechanism is challenging to study by bulk measurements owing to the heterogeneities of both constituents. Here we develop a generalizable, quantitative multimodal microscopy platform that combines multi-channel optical imaging and photocurrent mapping to probe such biohybrids down to single- to sub-cell/particle levels. We uncover and differentiate the critical roles of different hydrogenases in the lithoautotrophic bacterium Ralstonia eutropha for bioplastic formation, discover this bacterium's surprisingly large nanoampere-level electron-uptake capability, and dissect the cross-membrane electron-transport pathways. This imaging platform, and the associated analytical framework, can uncover electron-transport mechanisms in various types of biohybrid, and potentially offers a means to use and engineer R. eutropha for efficient chemical production coupled with photocatalytic materials.


Assuntos
Imagem Multimodal , Transporte de Elétrons
3.
ACS Meas Sci Au ; 2(1): 4-13, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35844953

RESUMO

Opioids are typically used for the treatment of pain related to disease or surgery. In the body, they enter the bloodstream and interact with a variety of immune and neurological cells that express the µ-, δ-, and κ-opioid receptors. One blood-borne cell-like body that is not well understood in the context of opioid interactions is the platelet. The platelet is a highly sensitive anucleate cell-like fragment responsible for maintaining hemostasis through shape change and the secretion of chemical messengers. This research characterizes platelet opioid receptors, how specific receptor agonists impact platelet exocytosis, and the role of the κ-and µ-receptors in platelet function. Platelets were found to express all three opioid receptors, but upon stimulation with their respective agonist no activation was detected. Furthermore, exposure to the opioid agonists did not impact traditional platelet secretion stimulated by thrombin, a natural platelet activator. In addition, data collected from knockout mice suggest that the opioid agonists may be interacting nonspecifically with platelets. Dark-field images revealed differences in activated platelet shape between the κ- and µ-knockout platelets and the control platelets. Finally, κ-knockout platelets showed variations in their ability to adhere and aggregate compared to control platelets. Overall, these data show that platelet function is not likely to be heavily affected by blood-borne opioids.

4.
Biochim Biophys Acta ; 1860(5): 910-916, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26306737

RESUMO

BACKGROUND: Extradiol dioxygenases are a family of nonheme iron (and sometimes manganese) enzymes that catalyze an O2-dependent ring-opening reaction in a biodegradation pathway of aromatic compounds. Here we characterize the thermodynamics of two substrates binding in homoprotocatechuate 2,3-dioxygenase (HPCD) prior to the O2 activation step. METHODS: This study uses microcalorimetry under an inert atmosphere to measure thermodynamic parameters associated with catechol binding to nonheme metal centers in HPCD. Several stopped-flow rapid mixing experiments were used to support the calorimetry experiments. RESULTS: The equilibria constant for 4-nitrocatechol and homoprotocatechuate binding to the iron(II) and manganese(II) forms of HPCD range from 2×10(4) to 1×10(6), suggesting there are distinctive differences in how the enzyme-substrate complexes are stabilized. Further experiments in multiple buffers allowed us to correct the experimental ΔH for substrate ionization and to fully derive the pH and buffer independent thermodynamic parameters for substrate binding to HPCD. Fewer protons are released from the iron(II) dependent processes than their manganese(II) counterparts. CONCLUSIONS: Condition independent thermodynamic parameters for 4-nitrocatechol and homoprotocatechuate binding to HPCD are highly consistent with each other, suggesting these enzyme-substrate complexes are more similar than once thought, and the ionization state of metal coordinated waters may be playing a role in tuning redox potential and in governing reactivity. GENERAL SIGNIFICANCE: Substrate binding to HPCD is a complex set of equilibria that includes ionization of substrate and water release, yet it is also the key step in O2 activation.


Assuntos
Ácido 3,4-Di-Hidroxifenilacético/química , Catecóis/química , Dioxigenases/química , Ferro/química , Manganês/química , Anaerobiose , Calorimetria , Domínio Catalítico , Cátions Bivalentes , Concentração de Íons de Hidrogênio , Cinética , Ligantes , Modelos Moleculares , Proteínas Recombinantes/química , Soluções , Especificidade por Substrato , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...